CCMG Guidelines for Genomic Microarray Testing

Submitted by:
CCMG Cytogenetics Committee
June, 2010

Approved by:
CCMG Board of Directors
July 13, 2010

Prepared by:
James Stavropoulos and Mary Shago
Hospital for Sick Children
with contributions from the Canadian microarray user group:

Bruyere H; Chan M; Chernos J; Chun K; Cote G; Craddock K; Dawson A; Duncan A; Eydoux P; Feuk L; Finzel R; Freeman V; George A; Gillan T; Halbgewachs J; Harrison K; Hrynchak M; Kolomietz E; Lavoie J; Lemyre E; Lu C; Marshall C; McCready E; McGowan-Jordan J; Morash B; Mueller R; Parslow M; Pinto D; Scherer SW; Shetty S; Soucy J-F; Speevak M; Wang, J; Winsor E; Xu J.
TABLE OF CONTENTS

Microarray – Suggestions for Practice Guideline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Genomic Microarray – Capabilities</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Genomic Microarray – Limitations</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Indications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- Constitutional</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- Prenatal</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>- Malignancies</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Requisition Requirements</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>Specimen Requirements</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>Platform Requirements - Minimum</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>Reference DNA</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Procedure</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>Monitoring of Analytic Standards</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>- Pre-analytic</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>- Analytic</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>- Post-analytic</td>
<td>6</td>
</tr>
<tr>
<td>10.</td>
<td>Analysis of Microarray Data</td>
<td>6</td>
</tr>
<tr>
<td>11.</td>
<td>Interpretation of Microarray Data</td>
<td>7</td>
</tr>
<tr>
<td>12.</td>
<td>Validation and Reporting of Results</td>
<td>7</td>
</tr>
<tr>
<td>13.</td>
<td>Turn Around Time</td>
<td>8</td>
</tr>
<tr>
<td>14.</td>
<td>Documentation</td>
<td>9</td>
</tr>
<tr>
<td>15.</td>
<td>Proficiency Testing</td>
<td>9</td>
</tr>
<tr>
<td>16.</td>
<td>Suboptimal Specimens</td>
<td>9</td>
</tr>
<tr>
<td>17.</td>
<td>Validation of Platform</td>
<td>9</td>
</tr>
<tr>
<td>18.</td>
<td>Other Guidelines</td>
<td>9</td>
</tr>
<tr>
<td>19.</td>
<td>References</td>
<td>10</td>
</tr>
</tbody>
</table>
1. Genomic Microarray -Capabilities

- Array comparative genomic hybridization using platforms with bacterial artificial chromosomes (BAC) or non-polymorphic oligonucleotide probes can detect:
 - Copy number gains and losses across the genome i.e. unbalanced microscopic and submicroscopic chromosome rearrangements.
- Microarray platforms containing single nucleotide polymorphism (SNP) probes can detect:
 - Copy number gains and losses across the genome i.e. unbalanced microscopic and submicroscopic chromosome rearrangements.
 - Long contiguous stretches of homozygosity which may indicate homodisomic uniparental disomy (UPD), identity by descent or loss of heterozygosity. Confirmation of UPD requires a trio haplotype analysis.
- Resolution:
 - Depends on probe size, number, and the placement of probes across the genome.
 - Is determined by the software algorithm and settings selected by the user to detect copy number alterations.

2. Genomic Microarray Limitations

- Array comparative genomic hybridization using platforms with BAC or non-polymorphic oligonucleotide probes cannot detect:
 - Balanced rearrangements, long contiguous stretches of homozygosity, low level mosaicism of unbalanced rearrangements/aneuploidy, and polyploidy.
- Microarray platforms containing SNP probes cannot detect:
 - Balanced rearrangements, low level mosaicism of unbalanced rearrangements/aneuploidy, and heterodisomic uniparental disomy.

3. Indications

- For Constitutional Postnatal and Prenatal Indications – Practice guidelines should refer to the Canadian College of Medical Geneticists (CCMG) Position Statement on the use of array genomic hybridization, developed by Clinical Practice, Cytogenetics, and Prenatal Diagnosis committees.
- Constitutional Postnatal
 - Idiopathic mental retardation/developmental delay/autism/multiple congenital abnormalities.
 - Apparently balanced inherited or de novo rearrangements in a phenotypically abnormal individual.
 - The constitutional microarray assay which includes whole genome coverage is not recommended for couples experiencing infertility/multiple spontaneous pregnancy losses.
• Prenatal:
 o Fetal congenital abnormalities detected on ultrasound or magnetic resonace imaging (MRI) that indicate a significant risk for an unbalanced chromosome abnormality.
 o Apparently balanced inherited rearrangements in a fetus with fetal congenital abnormalities.
 o Apparently balanced de novo rearrangements identified by G-band analysis.
 o Referral from a CCMG-accredited or equivalent Medical Geneticist is required to perform pre- and post-test counseling.
 o Not recommended for pregnancies with low risk of chromosome abnormalities including late maternal age, soft signs on ultrasound, previous pregnancy with a trisomy, positive maternal serum screen, positive integrated prenatal screen or positive first trimester screen.

• Malignancies:
 o The utility of microarrays designed for use in the analysis of bone marrow, soft and solid tumors, as well as paraffin embedded tissue is currently being studied by the Cancer Cytogenomics Microarray Consortium (CCMC) Clinical trial group.

4. Requisition Requirements
 1. Patient name and address
 2. Patient date of birth
 3. Patient sex
 4. Unique identifying number
 5. Name of physician or other authorized person requesting test
 6. Specimen source
 7. Specimen collection date
 8. Test requested
 9. Clinical indications for the test(s)
 10. Ethnicity – polymorphic CNV frequencies may differ between populations

5. Specimen Requirements
DNA extracted from each tissue type must be validated at the discretion of the laboratory director, since performance characteristics and sensitivity may vary between DNA samples extracted from different tissues.

• Peripheral blood:
 o Two specimens in appropriate anticoagulants – one for DNA extraction and when required, one for cytogenetic preparation to confirm or further characterize positive findings by FISH/G-banding.

• Tissue:
 o Cultured primary fibroblasts with low passage number, saliva, or buccal swab.
- Direct/cultured products of conception (umbilical cord, skin, cord blood etc.).
 - Prenatal:
 - The laboratory must establish specimen type (amniocentesis/CVS), preparation (direct/cultured tissue), minimum tissue quantity and quality to obtain sufficient genomic DNA for microarray analysis with a clinically relevant turnaround (TAT).
 - Parental peripheral blood samples suitable for possible FISH and microarray follow-up studies should be obtained with the prenatal sample.
 - Caution: analysis of transformed cell lines (i.e. EBV transformed lymphoblasts) should be avoided for clinical studies since there is an increased risk of detecting genomic imbalances acquired during transformation/culturing.

6. Platform Requirements - Minimum
- The manufacturer must provide details regarding the distribution and sequence of all probes, as well as quality control measures performed prior to shipment of new lots of arrays.
- Constitutional Postnatal:
 - Genome-wide backbone coverage at a minimum effective resolution of 400 Kb.
 - Oligonucleotide-based array platforms with non-polymorphic probes or platforms which combine SNP and non-polymorphic probes, are recommended.
- Prenatal:
 - Adequate coverage to detect recurrent deletions/duplications associated with known clinically relevant syndromes.
 - Low resolution genome-wide backbone coverage (e.g. 500 to 1000 Kb) may be preferable for the prenatal diagnostic setting to minimize the detection of variants of unknown significance.
 - A higher resolution analysis (e.g. similar to postnatal microarray platform) may be appropriate for analysis of products of conception and stillbirths.

7. Reference DNA
- The laboratory must establish a reliable source of male and female reference DNA – either commercially available mixtures or internal review board (IRB) approved volunteer source are acceptable.
- Longitudinal consistency of reference DNA is recommended.
- For constitutional aCGH studies, sex - matched comparisons with patients’ DNA are recommended.

8. Procedure
- The laboratory must have written procedures and a quality management program for all aspects of microarray testing.
- The laboratory must document all analytic parameters in the patient record.
9. Monitoring of Analytic Standards
 - Pre-analytic:
 o Evaluate the quality of DNA (e.g. concentration/quality by fluorometer/spectrophotometer and by agarose gel electrophoresis).
 o Document equipment monitoring and maintenance.
 o Validate new lots of arrays by repeating hybridization of an abnormal sample analyzed by the previous lot of arrays. Visual inspection of array images and data quality measures should be used to inspect the quality of new lots of arrays.
 o Compare each new lot of reference DNA to a previous lot by testing a positive case.
 o Assess quality parameters for control DNA in the same manner as the patient DNA prior to each experiment (e.g. concentration/quality by fluorometer/spectrophotometer and by agarose gel electrophoresis).
 - Analytic:
 ▪ Assess fragmentation of DNA by sonication/enzyme digestion if applicable (e.g. by agarose gel electrophoresis)
 ▪ Assess labeling efficiency of DNA samples (e.g. spectrophotometer).
 - Post-analytic:
 ▪ Perform visual inspection of array image if possible, to check for hybridization of probe mixture across the entire array – check for uneven hybridization due to stationary bubbles or leaks.
 ▪ Ensure that there is no significant wave artifact in the microarray log2 ratio plot, which may potentially result in missed abnormality calls.
 ▪ Evaluate QC data calculated from analysis software and establish minimum requirements to proceed with data interpretation.
 ▪ Monitor ongoing FISH/QPCR/MLPA validation of genomic gains/losses called by the microarray software algorithm.

10. Analysis of Microarray Data
 - It is recommended that one algorithm and parameters be used for all patient data analysis.
 - The laboratory geneticist should be familiar with the principles of the algorithm/software processing the data.
 - Establish the appropriate software algorithm and parameters for the diagnostic assay during the initial validation of the microarray platform.
 - Re-analyze all data used for initial validation if switching to an alternate analysis software/algorithm.
 - Determine the sensitivity of the assay to detect mosaicism OR indicate in the report the limitations of the assay to detect mosaicism.
Interpretation of Microarray Data

- The laboratory geneticist should be familiar with current literature and databases available for interpretation of CNV data, and must interpret patient results using tools such as PUBMED, UCSC Genome Browser (http://genome.ucsc.edu/), Online Mendelian Inheritance in Man (OMIM) (www.ncbi.nlm.nih.gov/sites/entrez?db=omim), Database of Genomic Variants (http://projects.tcag.ca/variation/), DECIPHER (www.sanger.ac.uk/PostGenomics/decipher/), and ECARUCA (www.ecaruca.net).

- The laboratory should establish an internal database to identify common CNVs specific to their patient population and/or recurrent false-positive calls associated with the particular microarray platform (Qiao et al. 2008; Friedman et al. 2009).

- The laboratory geneticist must ensure the databases used for interpreting CNVs are based on the same reference human genome build (e.g. NCBI 36, March 2006 versus NCBI 37 February 2009), as the data generated from the array platform.

- Interpretation of a CNV should consider the gene content, size of the imbalance, whether it is inherited or de novo, complete or partial overlap with a known clinically relevant region, or whether it has been reported in databases of healthy control populations (Rodriguez-Revenga et al. 2007; Friedman et al. 2009; Koolen et al. 2009). As the data generated from healthy control populations is often not validated, a specific CNV region should appear in at least two independent studies to be considered a common benign variant.

- The laboratory geneticist should be aware of the current information regarding novel recurrent CNVs that may be associated with susceptibility to developmental disorders such as 16p11.2 (Kumar et al. 2008; Marshall et al. 2008; Weiss et al. 2008), but with limited information regarding penetrance, expressivity and recurrence risk. These associations must be interpreted appropriately; and family studies to determine the segregation of the CNV with disease state are recommended.

Validating and Reporting Results

- Validation of potentially pathogenic copy number variants should be performed by an independent assay such as FISH, QPCR, MLPA or an alternate microarray platform. When possible, FISH analysis is recommended to provide structural information of clinically significant CNVs (e.g. insertion, tandem duplication, marker).

- Microarray analysis of parental samples may be used to identify inherited CNVs, with no further validation studies required; whereas suspected de novo CNVs should be validated in the proband by an independent assay. FISH studies of parental samples should be performed for all suspected de novo CNVs to investigate the possibility of a parental balanced rearrangement.

- For parental follow-up studies, FISH or targeted molecular techniques should be preferred over whole genome array testing.

- The report should be written with the assumption that it will potentially be read by Geneticists and non-Geneticists. The report must include the size of CNVs with
information regarding the gene content of the affected genomic region. The number of known genes, as well as identification of clinically significant genes (e.g. OMIM Morbid Map Genes) should be included in the report. The number of probes affected on the microarray platform, as well as the position of the adjacent unaffected probes must be indicated to provide information regarding the location of the CNV breakpoints.

- Copy number variants that are likely benign, and do not require validation or family studies, do not need to be included in the final report. A brief description of the laboratory reporting standards for this type of CNVs should be stated in the final report. Elements of the report should include:
 o Patient demographics as in other cytogenetic reports.
 o ISCN nomenclature describing the result of the analysis.
 o A written description of the results indicating clinical significance, gene content (e.g. number of known genes, list of OMIM Morbid Map genes), size and location of imbalance, adjacent microarray probes not included in the CNV, number of probes affected, method of validation with name of FISH probe, follow-up recommendations, CNVs of unknown clinical significance.
 o A description of the array platform with information regarding probe coverage and the effective resolution of analysis across the genome. If the effective resolution in regions known to be clinically significant, differs from the remainder of the genome, this information should be provided.
 o The genome build used as the reference (e.g. NCBI Build 36).
 o The software program used for analysis of the microarray data.
 o Information regarding control DNA or in silico control reference data set used in the microarray analysis.
 o Information regarding limitations of microarray testing e.g. mosaicism, balanced rearrangements, etc.

- Qualifications for reporting
 o The laboratory geneticist should be CCMG/ABMG certified in clinical cytogenetics and/or molecular genetics
 o The laboratory geneticist should be familiar with the principles of chromosome structure, heteromorphisms, chromosomal imbalance and cytogenetic nomenclature.
 o If microarray technology is used in the analysis of malignancies, the laboratory geneticist must be CCMG/ABMG certified minimally in clinical cytogenetics, or have extensive training in molecular pathology.

13. Turnaround Time
- Routine Constitutional – 90% of samples should be reported within 6 weeks of specimen collection, which would include 2 weeks for FISH validation studies if performed prior to finalizing the clinical report.
- Expedite (Newborn) - 90% of samples should have a preliminary report with non-validated microarray results within 2 weeks. The final report should be issued
within 4 weeks of specimen collection, which would include validation of the microarray result by an independent method.

14. Documentation to be Maintained in the Laboratory Records
 • Quality indicators i.e. DNA sample quality, labeling efficiency, microarray QC measures
 • Lot numbers for all reagents
 • Equipment maintenance records
 • All validated and non-validated abnormalities called by microarray software
 • Failed experiments and repeats
 • Maintained for 20 years

15. Proficiency Testing
 • Required – minimum 4 samples per year
 • CAP/QMPLS suggested as PT providers

16. Suboptimal specimens
 • When possible, a repeat specimen should be obtained.
 • If a repeat sample is not available (e.g. post-mortem sample) microarray analysis may be performed with the limitations of the results indicated in the body of the report.

17. Validation of platform
 • Validation is required when the laboratory is introducing the technique as a diagnostic test or when changing platforms:
 o Correct identification of thirty known abnormal specimens is suggested as a minimum requirement.
 • For validation of an enhanced (updated) version of a microarray platform
 o Correct identification of 5 known abnormal samples is suggested.

18. Other Guidelines
 • American (Shaffer et al. 2007) and European (Vermeesch et al. 2007) guidelines
 • Clinical Laboratory Standards Institute (CLSI) document MM12-A (2006)
 • International Standard for Cytogenomic Arrays (ISCA) consensus statement (Miller et al. 2010)
19. References

www.clsi.org

